
SMART CONTRACTS REVIEW

December 23rd 2023 | v.	1.0

score

86

PASS
Zokyo Security has concluded that

these smart contracts passed a

security audit.

Security Audit Score

Zokyo Audit Scoring Avantis

1

Avantis Labs Smart Contracts Review

1. Severity of Issues:

 - Critical: Direct, immediate risks to funds or the integrity of the contract. Typically, these
would have a very high weight.

 - High: Important issues that can compromise the contract in certain scenarios.

 - Medium: Issues that might not pose immediate threats but represent significant
deviations from best practices.

 - Low: Smaller issues that might not pose security risks but are still noteworthy.

 - Informational: Generally, observations or suggestions that don't point to vulnerabilities
but can be improvements or best practices.

2. Test Coverage: The percentage of the codebase that's covered by tests. High test
coverage often suggests thorough testing practices and can increase the score.

3. Code Quality: This is more subjective, but contracts that follow best practices, are well-
commented, and show good organization might receive higher scores.

4. Documentation: Comprehensive and clear documentation might improve the score, as it
shows thoroughness.

5. Consistency: Consistency in coding patterns, naming, etc., can also factor into the score.

6. Response to Identified Issues: Some audits might consider how quickly and effectively
the team responds to identified issues.

Hypothetical Scoring Calculation:

2

Avantis Labs Smart ContractS Review

Let's assume each issue has a weight:

- Critical: -30 points

- High: -20 points

- Medium: -10 points

- Low: -5 points

- Informational: -1 point

Starting with a perfect score of 100:

- 0 Critical issues: 0 points deducted

- 2 High issues: 1 resolved and 1 acknowledged = -3 points deducted

- 7 Medium issues: 4 resolved and 3 acknowledged = - 6 points deducted

- 13 Low issues: = 11 resolved and 2 acknowledged = - 2 points deducted

- 19 Informational issues: 10 resolved and 9 acknowledged = -3 points deducted

Thus, 100 - 3 - 6 -2 - 3 = 86

3

Avantis Labs Smart Contracts Review

This document outlines the overall security of the Avantis Labs smart contracts evaluated by
the Zokyo Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Avantis Labs smart contracts
codebase for quality, security, and correctness.

There were 0 critical issues found during the review. (See Complete Analysis)

Contract Status

low Risk

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contracts but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the Avantis Labs team put in place a bug
bounty program to encourage further active analysis of the smart contracts.

https://docs.google.com/document/d/1m2vatjc_MOYvEKxLzVnjVGnjJl3a-oJwYa7b19PeIao/edit#heading=h.y413rcm4r1gs

4

Avantis Labs Smart Contracts Review

9Complete​ ​Analysis

7Executive Summary

8Structure​ ​and​ ​Organization​ ​of​ ​the Document

5Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

5

Avantis Labs Smart Contracts Review

Within the scope of this audit, the team of auditors reviewed the following contract(s):

Execute.sol

PairInfos.sol

PairStorage.sol

PriceAggregator.sol

Referral.sol

Trading.sol

TradingCallbacks.sol

TradingStorage.sol

Tranche.sol

VaultManager.sol

VeTranche.sol

The source code of the smart contract was taken from the Avantis Labs repository:  
Repo: https://github.com/Avantis-Labs/avantis-contracts/tree/audits

Last commit -798c3a998d8a4477c7b342602def1ab708cae162

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most resent vulnerabilities;

Meets best practices in code readability, etc.

https://github.com/Avantis-Labs/avantis-contracts/tree/audits

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Thorough manual review of the
codebase line by line.

6

Avantis Labs Smart Contracts Review

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of Avantis Labs smart contracts. To do so, the code was reviewed line by line
by our smart contract developers, who documented even minor issues as they were
discovered. In summary, our strategies consist largely of manual collaboration between
multiple team members at each stage of the review:

7

Avantis Labs Smart Contracts Review

Executive Summary

The Zokyo team has not identified any critical severity issues. However, two issues with high
severity have been identified, along with medium and low severity issues, and a couple of
informational findings. For a more in-depth analysis of these discoveries, please consult the
"Complete Analysis" section.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational​

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the Avantis Labs team and the Avantis Labs team is aware of it, but they have chosen
to not solve it. The issues that are tagged as “Verified” contain unclear or suspicious
functionality that either needs explanation from the Client or remains disregarded by the
Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​the Document

8

Avantis Labs Smart Contracts Review

Complete​ ​Analysis

Findings summary

9

Avantis Labs Smart Contracts Review

Resolved

Acknowledged

Resolved

Resolved

Acknowledged

Resolved

Acknowledged

Resolved

High

Medium

Low

Low

Low

Low

Medium

Medium

RiskTitle# Status

Acknowledged

Acknowledged

Medium

Resolved

Resolved

Resolved

Resolved

Resolved

Resolved

3

High

Medium

Medium

Low

Low

Low

Medium

1

Possibility of immediate position liquidation after
contract state is unpaused

5

7

11

15

13

9

2

6

10

14

16

12

8

4

Tranche’s withdrawal fees are not deducted properly

Method getEarnings() underflows

Function returns wrong values

Function is returning the wrong first empty index

ERC20 Transfers go unvalidated

collateralFees are initialized to values in a descending
order

Chainlink’s latestRoundData might return stale or
incorrect results

Lack of access control in setWithdrawThreshold function

Possibility of ETH being stuck in Trading contract

Instant governance transfer

Referrer codes of user can be overridden and lost

Centralization risk in several methods

Tranche Transfer can potentially lead to wasted assets

Potentially losing eth

PrincipalShareDeposited is being increased
without actual transfer/minting of shares

10

Avantis Labs Smart Contracts Review

Resolved

Acknowledged

Resolved

Resolved

Acknowledged

Acknowledged

Resolved

Acknowledged

Resolved

Resolved

Low

Low

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Low

RiskTitle# Status

Resolved

Resolved

Resolved

Acknowledged

Resolved

Resolved

Acknowledged

Acknowledged

Acknowledged

Resolved

Low

Low

Informational

Informational

Informational

Informational

Informational

Informational

Informational

Low

18

22

24

26

30

32

28

34

36

20

17

21

23

25

29

35

31

33

27

19

Missing initializing PausableUpgradeable contract

The in-memory value won’t be updated

Insufficient validation of max lock time

Trade.index is assigned twice

Inverse `if-else` statements that have a negation

Right Bitshift by 1 when need to divide by 2

Confusing method name

Safemath unnecessary computation cost being incurred

Redundant operation

MinLockTime should be less than maxLockTime

Missing _disableInitializer() implementation

Method forceUnlock(...) might fail for blacklisted USDC
addresses

Lack of PausableUpgradable initialization

Unused import

Split `require` statement with multiple conditions

Percentage value needs to be properly bounded

Use optimal `for loop`

Using inline assembly for address(0) check is cheaper

Methods applyReferralOpen() and applyReferralClose()
can be combined into a single method

he trading contract doesn’t allow the removal of
whitelisted addresses

11

Avantis Labs Smart Contracts Review

Resolved

Resolved

Acknowledged

Informational

Informational

Informational

RiskTitle# Status

Acknowledged

Resolved

Informational

Informational

38

40

41

37

39

Misleading revert messages

Repeated instruction

Pair delisted but not deleted

Redundant if statement

Vague revert messages

Here, the fee is calculated but the whole amount of `assets` is sent to the receiver address
without the fee deduction.

Instead, it is sent from the vault to the vault manager in the next line which is an extra
amount being paid as a fee.

High-1 Acknowledged

Tranche’s withdrawal fees are not deducted properly

In Contract Tranche.sol, methods redeem/withdraw calls _withdraw(...) method internally.
The method _withdraw has the following logic:

12

Avantis Labs Smart Contracts Review

13

Avantis Labs Smart Contracts Review

PoC:

14

Avantis Labs Smart Contracts Review

This test returns the following log:

15

Avantis Labs Smart Contracts Review

Recommendation:

update the logic to send `assets-fee` to the receiver during withdrawal.

Fix: The client acknowledged the issue with the comment “While it looks like the fee is not
being deducted, the fee will be shown on the UI as something the user has to pay on top of
the assets they deposit”.

16

Avantis Labs Smart Contracts Review

High-2 Resolved

Lack of access control in setWithdrawThreshold function

The setWithdrawThreshold function from Tranche contract is responsible for setting a
threshold that dictates the conditions under which withdrawals can occur from the contract.
However, the function can be invoked by any external actor without restriction. A malicious
actor could set the withdrawal threshold to a zero value, effectively freezing the contract's
funds by making the utilization ratio limit unachievable. Setting it to zero would mean users
could never meet the withdrawal criteria, effectively preventing all users from retrieving their
assets.

Recommendation:

Use an onlyGov modifier similar to that used for other governance functions.

Medium-1 Acknowledged

Possibility of immediate position liquidation after contract state is unpaused

When the updateMargin function within Trading contract is paused, traders are unable to
adjust their margins to respond to market volatility. If the market moves against a trader's
position during the pause, they could fall below the required maintenance margin without
any recourse to rectify the situation by depositing additional collateral. Consequently, once
the contract resumes and updateMargin is re-enabled, these under-margined positions
become immediate targets for liquidation bots.

Recommendation:

Consider introducing a grace period after resuming contract functions to allow traders to
update their margins before any liquidations can be processed.

17

Avantis Labs Smart Contracts Review

Medium-2 Resolved

PrincipalShareDeposited is being increased without actual transfer/minting of shares

In Contract Tranche.sol, the method _withdraw(...) has the following logic:

Here, when receiver != owner, the mapping principalShareDeposited and
principalAssetsDeposited are being increased for the receiver address after the shares of
the owner have been burned and assets have been sent to the receiver address.

18

Avantis Labs Smart Contracts Review

This is confusing since there are no shares/LP tokens transferred to the receiver address but
according to the mapping principalShareDeposited, the receiver owns some shares.

This is also contrary to the _deposit() method where actual shares are minted and also in
_transfer() where shares are transferred from owner to receiver.

PoC:

19

Avantis Labs Smart Contracts Review

20

Avantis Labs Smart Contracts Review

This test logs the following result:

Here, we can see the receiver LP shares are 0 but shares deposited for the receiver are > 0.

It gives the false implication that the receiver has shares that can be withdrawn for assets
but it will fail.

Recommendation:

Update the _withdraw logic to avoid a misleading scenario to maintain consistency between
real shares balance and mapping principalSharesDeposited.

Fix: Issue fixed, It is advised to remove the unused mappings principalAssetsDeposited &
principalSharesDeposited.

21

Avantis Labs Smart Contracts Review

Medium-3 Resolved

Method getEarnings() underflows

As we notice in the above findings, the principalAssetDeposited is being increased for a
receiver who has 0 LP tokens or no shares. The method getEarning(...) returns an
unexpected result if it is checked for the same receiver.

PoC:

22

Avantis Labs Smart Contracts Review

This test logs the following results:

Here, the earnings for the receiver after redemption is a very large value which is clearly due
to underflow.

Recommendation:

Update the _withdraw logic to avoid a misleading scenario to maintain consistency between
real shares balance and mapping principalAssetsDeposited.

23

Avantis Labs Smart Contracts Review

Medium-4 Acknowledged

Possibility of ETH being stuck in Trading contract

In Contract Trading.sol, the methods updateSl(...) and updateTpAndSl(...) allows users to
update the SL of an open trade. These methods internally call the _updateSl(...) method
which has the following check.

In this logic, `msg.value` passed as a fee for the fulfill(...) method is used only in the `else`
branch. Otherwise, it is just kept in the contract and never used.

Recommendation:

Add a method to withdraw the stuck ETH in case. Also, check off-chain if the contract has
ETH already for the oracle fee and send accordingly.

24

Avantis Labs Smart Contracts Review

Medium-5 Resolved

Function returns wrong values

Referral.sol - Function traderReferralDiscount() returns significant false values of
traderFeesPostDiscount and rebateShare.

That takes place in a scenario where tiers[_tierId].feeDiscountPct is zero. In that
case traderFeesPostDiscount should be equal to _fee because there is zero discount.
And so rebateShare should be non-zero since it is derived from
traderFeesPostDiscount.

Recommendation:

Return the correct values in the case of zero tiers[_tierId].feeDiscountPct.

Fix: Issue was addressed successfullthe y by client in
dad4a2c6e161294019e0fd1ea7a89e797647c2e5 by removing the if statement.

Medium-6 Acknowledged

Potentially losing eth

Trading.sol - Function openTrade accepts native coin (i.e. ETH in Ethereum main net) as it is
payable function. Users interacting with this function might send native coin by mistake
while the the _type is not equal to IExecute.OpenLimitOrderType.MARKET. Therefore
the contract is expecting USDC instead of native coin. In that scenario the coin sent is being
wasted in the contract and not returned to the caller.

Recommendation:

Revert if msg.value is non-zero for the unexpected _type.

Fix: While issue persists, it is acknowledged by client. It becomes a design choice which
aims at saving the gas cost that comes with the required extra checks. That extra gas cost
would be incurred by traders in most cases in order to protect careless traders in rare
occasions, hence the choice to keep that code as it is.

25

Avantis Labs Smart Contracts Review

Medium-7 Resolved

Chainlink’s latestRoundData might return stale or incorrect results

The fulfill function in the PriceAggregator contract use Chainlink oracle as a second oracle to
retrieve price data by calling latestRoundData. However, there's a risk that this data may be
stale or incorrect due to various reasons related to Chainlink oracles. There is no check if the
return value indicates stale data. This could lead to stale prices according to the Chainlink
documentation�
� https://docs.chain.link/docs/historical-price-data/#historical-rounds

Recommendation:

Check the updatedAt parameter returned from latestRoundData() and compare it to a
staleness threshold.

Low-1 Resolved

Instant governance transfer

Contracts TradingStorage.sol, Referral.sol, Vester.sol, VaultManager.sol use setGov function
for transferring ownership. In case of a mistake in the provided address, the management of
the particular contract will be irretrievably lost.

Recommendation:

Modify the process of updating the governance to be a two-step process. This will require
the new owner to explicitly accept the ownership update.

https://docs.chain.link/docs/historical-price-data/#historical-rounds

26

Avantis Labs Smart Contracts Review

Low-2 Resolved

Function is returning the wrong first empty index

TradingStorage.sol - Function firstEmptyTradeIndex() mistakenly returns index = 0 since
this is the default value to be returned. This takes place when the _openTrades array is
filled as the loop surpasses maxTradesPerPair iterations and spits out the default return
value zero.

 function firstEmptyTradeIndex(address trader, uint pairIndex) public
view override returns (uint index) {

 for (uint i = 0; i < maxTradesPerPair; i++) {

 if (_openTrades[trader][pairIndex][i].leverage == 0) {

 index = i;

 break;

 }

 }

 }

It also takes place here:

 function firstEmptyOpenLimitIndex(address trader, uint pairIndex)
public view override returns (uint index) {

 for (uint i = 0; i < maxTradesPerPair; i++) {

 if (!hasOpenLimitOrder(trader, pairIndex, i)) {

 index = i;

 break;

 }

 }

 }

The severity of the bug could have been more serious if Trading.openTrade() does not
validate the count of trades being executed by the trader. Fortunately, there is a check to
prevent that in Trading.openTrade() which overcomes that bug:

27

Avantis Labs Smart Contracts Review

252 require(

253 storageT.openTradesCount(msg.sender, t.pairIndex) +

254 storageT.pendingMarketOpenCount(msg.sender, t.pairIndex)
+

255 storageT.openLimitOrdersCount(msg.sender, t.pairIndex) <

256 storageT.maxTradesPerPair(),

257 "MAX_TRADES_PER_PAIR"

258);

This bug though is having affecting Multicall.getFirstEmptyTradeIndexes() since it
also would return false zeroes.

Recommendation:

Function better reverts if there is no empty index (i.e. runover the for loop).

Recommendation:

Transferring to the same address needs to be disallowed.

Fix: Due to a big change in the implementation of the function, the issue becomes no longer
relevant.

Low-3 Resolved

Tranche Transfer can potentially lead to wasted assets

Tranche.sol - function _transfer() does not assert that sender and recipient are not
the same address. While this is not an issue in standard ERC20 since it does not leave side
effects. It poses a potential issue in this case since the transfer to same address leaves a
side effect due to _updateNegativePrincipal().

28

Avantis Labs Smart Contracts Review

Recommendation:

Rearrange the values of collateralFees that are assigned on initialization.

Low-4 Resolved

collateralFees are initialized to values in a descending order

VaultManager.sol - collateralFees is initialized to an array of numbers that are arranged
in a descending order.

collateralFees = [250, 150, 100, 25, 10];

Despite that setCollateralFees implementation requires that elements of array be
arranged in an ascending order as shown here:

require(_collateralFees[i] < _collateralFees[i + 1],
"NOT_DESCENDING_ORDER");

29

Avantis Labs Smart Contracts Review

Low-5 Resolved

Referrer codes of user can be overridden and lost

Referral.sol - In registerCode() the mapping codes[msg.sender] can be overridden by
a new _code on each time the sender invokes this function.

 function registerCode(bytes32 _code) external {

 require(_code != bytes32(0), "ReferralStorage: invalid _code");

 require(codeOwners[_code] == address(0), "ReferralStorage: code
already exists");

 codeOwners[_code] = msg.sender;

 codes[msg.sender] = _code;

 referrerTiers[msg.sender] = _DEFAULT_TIER_ID;

 emit RegisterCode(msg.sender, _code);

 }

The issue arises in functions setCodeOwner(), govSetCodeOwner() as well. It overrides
any code that might be already registered by the address of _newAccount.

 function setCodeOwner(bytes32 _code, address _newAccount) external {

 require(_code != bytes32(0), "ReferralStorage: invalid _code");

 address account = codeOwners[_code];

 require(msg.sender == account, "ReferralStorage: forbidden");

 codeOwners[_code] = _newAccount;

 delete codes[account];

 codes[_newAccount] = _code;

 emit SetCodeOwner(msg.sender, _newAccount, _code);

 }

 function govSetCodeOwner(bytes32 _code, address _newAccount) external
override onlyGov {

 require(_code != bytes32(0), "ReferralStorage: invalid _code");

30

Avantis Labs Smart Contracts Review

 address account = codeOwners[_code];

 delete codes[account];

 codeOwners[_code] = _newAccount;

 codes[_newAccount] = _code;

 emit GovSetCodeOwner(_code, _newAccount);

 }

Recommendation:

Validate that the new account is not affiliated with any code before the transfer of code
ownership takes place.

Fix: The issue still persists, with a change of which function contains the issue:

setCodeOwner() -> setPendingCodeOwnershipTransfer()

govSetCodeOwner unchanged

31

Avantis Labs Smart Contracts Review

Low-6 Resolved

ERC20 Transfers go unvalidated

In TradingStorage.sol - function transferUSDC() does not validate the returned bools of
the ERC20 transfers. So in handleDevGovFees, claimFees and claimRebate.

Also in VaultManager.sol - function allocateRewards():

IERC20(junior.asset()).transferFrom(msg.sender, address(this), rewards)

as well as in function sendReferrerRebateToStorage()

IERC20(junior.asset()).transfer(address(storageT), _amount);

as well as in function _distributeVeRewards()

IERC20(junior.asset()).transfer(address(veTranche), rewards);

as well as in function _distributeRewards()

IERC20(junior.asset()).transfer(tranche, rewards);

Recommendation:

Use SafeERC20

Low-7 Acknowledged

Centralization risk in several methods

Across the protocol, several methods use the modifier onlyGov() which can be used to
configure important parameters for the protocol such as Pyth oracles, backup oracles, etc..
But in the TradingStorage contract, gov is being set to the deployer address which is an
EOA.

This risks the whole protocol being centralized and controlled by a single EOA.

Recommendation:

It is advised to decentralize the usage of these functions by using a multisig wallet with at
least 2/3 or a 3/5 configuration of trusted users. Alternatively, a secure governance
mechanism can be utilized for the same.

32

Avantis Labs Smart Contracts Review

Low-8 Resolved

Missing _disableInitializer() implementation

The following contracts inherit the Intializable.sol and implement the initialize(...) method
with the initializer modifier without disabling the initializers for the implementation contract
as recommended by OpenZeppelin here.

Execute.sol

PairInfos.sol

PairStorage.sol

PriceAggregator.sol

Trading.sol

TradingCallbacks.sol

TradingStorage.sol

Tranche.sol

VaultManager.sol

VeTranche.sol

Recommendation:

Disable the initializers for the implementation method as suggested by OpenZeppelin here.

Low-9 Resolved

Missing initializing PausableUpgradeable contract

In Contract Trading.sol, PausableUpgradeable is inherited but not initialized.

Recommendation:

Initialize the PausableUpgradeable in the initialize() method adding __Pausable_init().

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract

33

Avantis Labs Smart Contracts Review

Low-10 Resolved

The trading contract doesn’t allow the removal of whitelisted addresses

In Contract Trading.sol, method addWhitelist(...) allows gov to whitelist any address for
accessing all trading methods. But there is no method to remove this whitelisted address if
it’s needed in the future or if any whitelisted address turns malicious.

Recommendation:

Add a method to allow removing whitelisted addresses in the trading contract.

Low-11 Resolved

MinLockTime should be less than maxLockTime

In Contract VaultManager.sol, the setMinLockTime(...) assigns a value to minLockTime but it
is not checked to be less than maxLockTime. In case minLockTime is accidentally set to
greater than maxLockTime, unexpected issues might be encountered.

Recommendation:

Add a check to ensure minLockTime < maxLockTime.

34

Avantis Labs Smart Contracts Review

Low-12 Acknowledged

Method forceUnlock(...) might fail for blacklisted USDC addresses

In Contract VeTranche.sol, method lock() allows anyone to lock their LP tokens for a time
period and get an NFT as a token receipt.

In case users do not unlock their tokens after lock period is over, the Platform can force
unlock by burning the NFT token and sending the locked LP tokens along with a reward paid
in USDC.

Any malicious user can deposit a minimal amount of USDC to mint LP tokens and lock those
tokens to get an NFT token and pass that NFT token to a blacklisted USDC address.

In case of a blacklisted address in the USDC contract, this sending of USDC rewards will fail
and forceUnlock(...) will fail to unlock the LP tokens probably locked forever unless the
malicious user sends the NFT to another address.

Recommendation:

Add a try/catch for the USDC rewards transfer in the claimRewards() method.

Low-13 Resolved

The in-memory value won’t be updated

The function updateSlCallback in the TradingCallback contract is intended to update a stop
loss for a trading order. The issue here is that t is a memory variable, which means it only
exists within the scope of the function call and is not stored on the blockchain. Therefore,
updating t.timestamp has no effect on the persistent data. This line of code will only change
the timestamp of the local copy of the trade data, not the version that is stored on-chain in
storageT.

Recommendation:

The function should modify a state variable (stored in storage) instead of a memory variable.

35

Avantis Labs Smart Contracts Review

Informational-1 Resolved

Lack of PausableUpgradable initialization

The Trading contract derives from PausableUpgradeable, however, it fails to initialize the
inherited features.

Recommendation:

Initialize the PausableUpgradeable contract.

Informational-2 Resolved

Insufficient validation of max lock time

The function setMaxLockTime in VaultManager is designed to set the maximum lock time for
locking shares in the VeTranche contract. However, there is a lack of a check to ensure that
the new maximum lock time (_maxLockTime) is always greater than the already defined
minimum lock time (minLockTime).

Recommendation:

Check if the new lock time is greater than minLockTime.

Informational-3 Resolved

Unused import

In Contract TradingCallbacks, PausableUpgradeble is imported but never used.

In Contract Tranche.sol, ReentrancyGuardUpgradeable is imported, inherited, and initialized
but never used.

Recommendation:

Remove unused imports.

36

Avantis Labs Smart Contracts Review

Informational-4 Acknowledged

Trade.index is assigned twice

In Contract TradingStorage, the method storeTrade(...) assigns _trade.index the return of
method firstEmptyTradeIndex(...).

Although, storeTrade() is being called by the method _registerTrade(...) in the Contract
TradingCallbacks. The method _registerTrade() is also assigning trade.index using the same
method firstEmptyTradeIndex(...).

The same applies to the method firstEmptyOpenLimitIndex(...) in Trading.sol and
TradingStorage.sol contracts.

Recommendation:

It is advised to check if the assigned trade.index passed to the storeTrade(...) method
correct or not instead of reassigning it. Apply the same for firstEmptyOpenLimitIndex(...).

37

Avantis Labs Smart Contracts Review

Informational-5 Resolved

Methods applyReferralOpen() and applyReferralClose() can be combined into a single
method

In Contract TradingStorage, the methods applyReferralOpen() and applyReferralClose() have
the same logic with the only exception being the return parameters and their values. These
methods can be combined as follows:

Recommendation:

Use the above method to combine applyReferralOpen() and applyReferralClose().

38

Avantis Labs Smart Contracts Review

Informational-6 Acknowledged

Confusing method name

In Contract VaultManager, the method _receiveUSDCFromTrader(...) is actually transferring
the TradeStorage contract to the VaultManager contract but this method specifies it is from
the trader. It is noted that the trader funds are first transferred to the storage contract and
then to the vault manager but adding a comment to clarify it can be better.

Recommendation:

Add a comment to explain why funds are being transferred from the storage contract rather
than the trader as the method name mentions.

Informational-7 Acknowledged

Split `require` statement with multiple conditions

In Contract PairInfos, the method setPercentDepthArray(..) has a `require` statement which
has multiple conditions.

In Contract PairStorage, modifier groupOk(...) and feeOk(...) have a `require` statement
which has multiple conditions.

In Contract PriceAggregator, the method fullfill(...) has a `require` statement to check the
price and conf.

In Contract Trading, several methods have `require` statements with multiple conditions.

In Contract TradingCallbacks, method setFeeP has a `require` statement with multiple
conditions.

Recommendation:

Split the conditions in the `require` statements.

39

Avantis Labs Smart Contracts Review

Informational-8 Resolved

Inverse `if-else` statements that have a negation

In contract PairInfo, the method lossProtectionTier(...) has a `if-else` statement

Can be switched to save gas.

Informational-9 Resolved

Use optimal `for loop`

Across the protocol, use the for loop in an optimal way as follows:

for (uint256 i; i < limit;) {

 // inside the loop

 unchecked {

 ++i;

 }

}

Also, in the Vault Manager contract, `for` loop `++i` can be `unchecked { ++i;}

40

Avantis Labs Smart Contracts Review

Informational-11 Acknowledged

Using inline assembly for address(0) check is cheaper

Across the protocol, there are many parameters being checked if they are address(0) or not.

To reduce gas costs, we can use the following assembly code format.

function checkOptimized(address _caller) public pure returns (bool) {

 assembly {

 if iszero(_caller) {

 mstore(0x00, 0x20)

 mstore(0x20, 0x0c)

 mstore(0x40,
0x5a65726f204164647265737300) //
load hex of "Zero Address" to memory

 revert(0x00, 0x60)

 }

 }

}

Informational-10 Resolved

Right Bitshift by 1 when need to divide by 2

Across the protocol, there are occurrences of value being divided by 2. It can be made
cheaper by right-shifting them by 1.

In Trading.sol, levPosUSDC/2 can be levPosUSDC >> 1.

In PriceAggregator, the method _median can be updated as follows:

41

Avantis Labs Smart Contracts Review

Informational-12 Acknowledged

Safemath unnecessary computation cost being incurred

VaultManager.sol - i++ does not need to be safely computed.

function setCollateralFees(uint256[5] memory _collateralFees) external
onlyGov {

 for (uint i = 0; i < _collateralFees.length;) {

 require(_collateralFees[i] < 10000, "TOO_HIGH");

 if (i != _collateralFees.length - 1)

 require(_collateralFees[i] < _collateralFees[i + 1],
"NOT_DESCENDING_ORDER");

 i++;

 }

 collateralFees = _collateralFees;

 }

 function setBufferThresholds(uint256[5] calldata _bufferThresholds)
external onlyGov {

 for (uint i; i < _bufferThresholds.length;) {

 if (i != _bufferThresholds.length - 1)

 require(_bufferThresholds[i] < _bufferThresholds[i + 1],
"NOT_DESCENDING_ORDER");

 i++;

 }

 bufferThresholds = _bufferThresholds;

 }

Also there is totalRewards -= _amount; despite it is asserted before that
totalRewards >= _amount.

 function sendReferrerRebateToStorage(uint _amount) external override
onlyCallbacks {

 require(_amount > 0, "NO_REWARDS_ALLOCATED");

 require(totalRewards >= _amount, "UNDERFLOW_DETECTED");

42

Avantis Labs Smart Contracts Review

 totalRewards -= _amount;

 IERC20(junior.asset()).transfer(address(storageT), _amount);

 emit ReferralRebateAwarded(_amount);

 }

In Tranche.sol - totalReserved += amount; and totalReserved -= amount;
can be unchecked safely.

 /**

 * @notice Reserve a specific amount of balance.

 * @param amount The amount to reserve.

 */

 function _reserveBalance(uint256 amount) internal {

 require(super.totalAssets() >= amount + totalReserved,
"RESERVE_AMOUNT_EXCEEDS_AVAILABLE");

 totalReserved += amount;

 emit BalanceReserved(amount);

 }

 /**

 * @notice Release a specific amount of reserved balance.

 * @param amount The amount to release from the reserve.

 */

 function _releaseBalance(uint256 amount) internal {

 require(totalReserved >= amount,
"RELEASE_AMOUNT_EXCEEDS_AVAILABLE");

 totalReserved -= amount;

 emit BalanceReleased(amount);

 }

Recommendation:

Wrap operations within unchecked as they are ensured priorly they are within the safe
bounds.

Fix: Despite that client carried out useful gas savings, the specific examples from the
codebase mentioned here are not addressed but acknowledged.

43

Avantis Labs Smart Contracts Review

Informational-13 Acknowledged

Percentage value needs to be properly bounded

PairStorage.sol - In function updateLossProtectionMultiplier() , caller feeds the
function by array _multiplierPercent and it is not being checked to be less than 100.

222 require(_multiplierPercent[i] >= _MAX_LOSS_REBATE,
"REBATE_EXCEEDS_MAX");

Recommendation:

add require (_multiplierPercent[i] < 100).

Informational-14 Acknowledged

Redundant operation

Trading.sol - Function openTrade on line 277 calls firstEmptyOpenLimitIndex() in order
to get the first empty index to open an order. But it is worth noting that
storeOpenLimitOrder() already carries out that operation in its implementation.

 if (_type != IExecute.OpenLimitOrderType.MARKET) {

277 uint index = storageT.firstEmptyOpenLimitIndex(msg.sender,
t.pairIndex);

 storageT.storeOpenLimitOrder(

 ITradingStorage.OpenLimitOrder(

 msg.sender,

 t.pairIndex,

283 index,

222 require(_multiplierPercent[i] >= _MAX_LOSS_REBATE,
"REBATE_EXCEEDS_MAX");

Recommendation:

Omit line 277 since it is already being executed in the implementation of
storeOpenLimitOrder().

44

Avantis Labs Smart Contracts Review

Informational-15 Resolved

Redundant if statement

TradingCallbacks.sol - In function executeLimitCloseOrderCallback(), the condition
v.reward > 0 is already being checked in the outer if-statement line 380.

380 if (o.orderType != ITradingStorage.LimitOrder.LIQ && v.reward
> 0) {

381 uint usdcSentToTrader = _unregisterTrade(

382 t,

383 v.profitP,

384 v.posUSDC,

385 v.reward,

386 (v.posToken.mul(t.leverage) *
aggregator.pairsStorage().pairCloseFeeP(t.pairIndex)) /

387 100 /

388 _PRECISION,

389 i.lossProtection

390);

392 if (v.reward > 0) {

 executor.distributeReward(

 IExecute.TriggeredLimitId(o.trader, o.pairIndex,
o.index, o.orderType),

 v.reward

);

 }

Recommendation:

o need to have the if-statement at line 392.

45

Avantis Labs Smart Contracts Review

Informational-16 Acknowledged

Misleading revert messages

VaultManager.sol - Functions setCollateralFees() and setBufferThresholds() show
a misleading revert message. For instance the elements of _collateralFees array are
supposed to go in an ascending order (i.e. inceasing in value). But the revert message
presents NOT_DESCENDING_ORDER which implies that the array should be put in descending
order.

function setCollateralFees(uint256[5] memory _collateralFees) external
onlyGov {

 for (uint i = 0; i < _collateralFees.length;) {

 require(_collateralFees[i] < 10000, "TOO_HIGH");

 if (i != _collateralFees.length - 1)

 require(_collateralFees[i] < _collateralFees[i + 1],
"NOT_DESCENDING_ORDER");

 i++;

 }

 collateralFees = _collateralFees;

 }

 function setBufferThresholds(uint256[5] calldata _bufferThresholds)
external onlyGov {

 for (uint i; i < _bufferThresholds.length;) {

 if (i != _bufferThresholds.length - 1)

 require(_bufferThresholds[i] < _bufferThresholds[i + 1],
"NOT_DESCENDING_ORDER");

 i++;

 }

 bufferThresholds = _bufferThresholds;

 }

Recommendation:

Correct the misleading revert message.

46

Avantis Labs Smart Contracts Review

Informational-17 Acknowledged

Vague revert messages

PriceAggregator.sol - In function fulfill(), there are two cases in which the transaction
fails. If the backup price (extracted by backup feed) is not within the accepted bounds of
the price, the transaction fails. The two cases resembles whether back price is greater than
or less than the price. It can be more helpful if the revert message shows which of the two
cases that this transaction has failed.

if (bkPrice > price) {

 require(

 (((bkPrice - price) * 100 * _PRECISION) /
price) <= backupFeed.maxDeviationP,

 "BACKUP_DEVIATION_TOO_HIGH"

);

 }

 if (bkPrice < price) {

 require(

 (((price - bkPrice) * 100 * _PRECISION) /
bkPrice) <= backupFeed.maxDeviationP,

 "BACKUP_DEVIATION_TOO_HIGH"

);

 }

Recommendation:

Edit the revert message so that it gives information to the reader whether the failure came in
a state of bkPrice < price or bkPrice > price as it can be helpful.

47

Avantis Labs Smart Contracts Review

Informational-18 Resolved

Repeated instruction

VeTranche.sol - In functions unlock() and forceUnlock(), we have
lockStartTimeByTokenId[tokenId] gets to be deleted twice.

 delete tokensByTokenId[tokenId];

 delete rewardsByTokenId[tokenId];

 delete lockTimeByTokenId[tokenId];

 delete lockStartTimeByTokenId[tokenId];

 delete lockMultiplierByTokenId[tokenId];

 delete lockStartTimeByTokenId[tokenId];

Recommendation:

no need to repeat delete lockStartTimeByTokenId[tokenId]

Informational-19 Resolved

Pair delisted but not deleted

PairStorage.sol - pairs[_pairIndex] is not deleted despite that it is effectively
dereferenced here. Deleting that record should be useful to release storage being used.

 function delistPair(

 uint _pairIndex

) external onlyGov {

 Pair storage p = pairs[_pairIndex];

 require(isPairListed[p.from][p.to], "PAIR_NOT_LISTED");

 isPairListed[p.from][p.to]= false;

 emit PairUpdated(_pairIndex);

 }

Recommendation:

delete pairs[_pairIndex]

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

Execute.sol

PairInfos.sol

PairStorage.sol

PriceAggregator.sol

Referral.sol

Trading.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

48

Avantis Labs Smart Contracts Review

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

TradingCallbacks.sol

TradingStorage.sol

Tranche.sol

VaultManager.sol

VeTranche.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

49

Avantis Labs Smart Contracts Review

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug
bounty program to encourage further analysis of the smart contract by
third parties.

Avantis Labs

Avantis Labs

